A key challenge has been improving these models beyond a certain point, especially without the continuous infusion of human-annotated data. A groundbreaking paper by Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu presents an innovative solution: Self-Play Fine-Tuning (SPIN). …
We've taken on the exciting challenge of implementing the cutting-edge strategies presented in "ZEPHYR: Direct Distillation of LM Alignment". This paper's approach is not just theoretical—it's a blueprint for a significant leap in language model training. By adopting ZEPHYR's distilled direct preference optimization (dDPO), we've embarked on a code journey that brings these innovations from concept to reality. …
In today's rapidly growing world of conversational AI, developers often seek ways to leverage multiple models seamlessly to diversify outputs and enhance user experience. One such scenario involves using different Local Language Models (LLMs) to serve different purposes or to offer a variety of responses. In this article, we'll explore a method to set up and switch between multiple local LLMs, particularly Zephyr and Mistral 7B, using the Chainlit and Langchain libraries. …
Model fine-tuning and quantization play pivotal roles in creating efficient and robust machine learning solutions. This blog post explores the fine-tuning process of the Zephyr 7B GPT-Q model using 4-bit quantization to boost its performance for custom data inference tasks. …
In the rapidly evolving landscape of large language models (LLMs), enhancing their capabilities and performance is pivotal. Three prominent techniques that stand out in achieving this are: …