Google has just introduced Gemma, an innovative family of state-of-the-art open Large Language Models (LLMs), marking a significant stride in the open-source AI landscape. This release, featuring both 7B and 2B parameter models, underscores Google's ongoing commitment to open-source AI. The Hugging Face team is thrilled to support this launch, ensuring seamless integration within our ecosystem. …
In the dynamic world of Artificial Intelligence (AI), the realm of Reinforcement Learning (RL) has witnessed a paradigm shift, brought to the forefront by the groundbreaking paper "Deep Reinforcement Learning from Human Preferences". This novel approach, straying from the traditional pathways of predefined reward functions, paves the way for a more intuitive and human-centric method of training RL agents. Let's dive into the intricacies and implications of this innovative research. …
We've taken on the exciting challenge of implementing the cutting-edge strategies presented in "ZEPHYR: Direct Distillation of LM Alignment". This paper's approach is not just theoretical—it's a blueprint for a significant leap in language model training. By adopting ZEPHYR's distilled direct preference optimization (dDPO), we've embarked on a code journey that brings these innovations from concept to reality. …
Model fine-tuning and quantization play pivotal roles in creating efficient and robust machine learning solutions. This blog post explores the fine-tuning process of the Zephyr 7B GPT-Q model using 4-bit quantization to boost its performance for custom data inference tasks. …