Cognitive Architectures for Language Agents: A Framework for Building Intelligent Language Models. Large language models (LLMs) have achieved impressive results on many natural language tasks. However, to build truly intelligent agents, we need to equip LLMs with additional capabilities like memory, reasoning, learning, and interacting with the environment. A new paper titled "Cognitive Architectures for Language Agents" proposes a framework called CoALA to guide the development of such language agents. …
Reframing Large Language Models (LLMs) as agents has ushered in a new paradigm of automation. Researchers and practitioners have increasingly been using these models as agents to automate complex tasks using specialized functions. However, integrating useful functions into LLM agents often requires manual effort and extensive iterations, which is time-consuming and inefficient. Inspired by the analogy of humans continuously forging tools to adapt to tasks, this paper introduces a novel approach to train LLM agents by forging their functions, treating them as learnable 'agent parameters', without modifying the LLM weights. This paradigm, termed 'Agent Training', involves updating the agent's functions to maximize task-solving ability, offering a promising avenue for developing specialized LLM agents efficiently. …